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ABSTRACT: The mass concentration of fine particulate matter (PM2.5; diameters less than 2.5 mm) estimated from geo-
stationary satellite aerosol optical depth (AOD) data can supplement the network of ground monitors with high temporal
(hourly) resolution. Estimates of PM2.5 over the United States were derived from NOAA’s operational geostationary satel-
lites’ Advanced Baseline Imager (ABI) AOD data using a geographically weighted regression with hourly and daily tem-
poral resolution. Validation versus ground observations shows a mean bias of 221.4% and 215.3% for hourly and daily
PM2.5 estimates, respectively, for concentrations ranging from 0 to 1000 mg m23. Because satellites only observe AOD in
the daytime, the relation between observed daytime PM2.5 and daily mean PM2.5 was evaluated using ground measure-
ments; PM2.5 estimated from ABI AODs were also examined to study this relationship. The ground measurements show
that daytime mean PM2.5 has good correlation (r . 0.8) with daily mean PM2.5 in most areas of the United States, but with
pronounced differences in the western United States due to temporal variations caused by wildfire smoke; the relation be-
tween the daytime and daily PM2.5 estimated from the ABI AODs has a similar pattern. While daily or daytime estimated
PM2.5 provides exposure information in the context of the PM2.5 standard (.35 mg m23), the hourly estimates of PM2.5

used in nowcasting show promise for alerts and warnings of harmful air quality. The geostationary satellite based PM2.5

estimates inform the public of harmful air quality 10 times more than standard ground observations (1.8 versus 0.17 million
people per hour).

SIGNIFICANCE STATEMENT: Fine particulate matter (PM2.5; diameters less than 2.5 mm) are generated from
smoke, dust, and emissions from industrial, transportation, and other sectors. They are harmful to human health and
even lead to premature mortality. Data from geostationary satellites can help estimate surface PM2.5 exposure by filling
in gaps that are not covered by ground monitors. With this information, people can plan their outdoor activities accord-
ingly. This study shows that availability of hourly PM2.5 observations covering the entire continental United States is
more informative to the public about harmful exposure to pollution. On average, 1.8 million people per hour can be in-
formed using satellite data compared to 0.17 million people per hour based on ground observations alone.
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1. Introduction

The mass concentration of particulate matter with diame-
ters less than 2.5 mm (PM2.5) has been found to be harmful to
human health. Exposure to PM2.5 increases morbidity and
mortality and can cause diseases such as acute and chronic re-
spiratory illness, cardiovascular diseases, and even premature
death (Brook et al. 2010; Miller and Xu 2018; Pope and Dockery
2006; Cohen et al. 2017; Burnett et al. 2014; Southerland et al.

2022; O’Dell et al. 2021). The United States Environmental
Protection Agency (U.S. EPA) collects and distributes data
from state, local, and tribal agencies through the AirNow
system. AirNow includes a combination of regulatory (code
88101) and non-regulatory (code 88502) measurements at
over 1000 stations, providing near-real-time hourly PM2.5

observations. This monitoring enables EPA to disseminate
to the public current air quality conditions (airnow.gov).
However, measurements from surface stations have large
gaps because the stations are sparse and not distributed
uniformly across the United States. To fill the gaps, satel-
lite-retrieved aerosol optical depth (AOD) along with
additional data inputs are used in numerous different
methods to obtain accurate surface PM2.5 estimates (Hoff
and Christopher 2009; Engel-Cox et al. 2004; Zhang et al.
2009; Gupta and Christopher 2009; Liu et al. 2005; Kloog
et al. 2011; van Donkelaar et al. 2006, 2012; Hu 2009; Chu
et al. 2016; Chudnovsky et al. 2012; Hu et al. 2013, 2014,
2017; Geng et al. 2018; Xiao et al. 2018; Di et al. 2019;
Zhang and Kondragunta 2021; Just et al. 2020; Lee et al. 2011;
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Mhawish et al. 2020; S. Park et al. 2020a,b; She et al. 2020; Song
et al. 2014; Xu et al. 2015; Zheng et al. 2016). These algorithms
have been developed to scale satellite AOD to daily 24-h aver-
age surface PM2.5, making AOD-estimated PM2.5 suitable to
study long-term trends and impacts on human health. Because
the statistical models are often developed using past data, the
24-h average (midnight to midnight local time) PM2.5 data can
be computed to correlate with midafternoon AOD observations
from polar-orbiting satellites. When these models are applied in
real time, the estimated PM2.5 values are not representative of
current conditions, however, as they represent the 24-h average.
Reporting in real time requires shorter-term data to caution
people in time to reduce their 24-h exposure. This is addressed
by the EPA-endorsed Nowcasting method that calculates a mean
PM2.5 for the current hour by including weighted PM2.5 values
from the prior twelve hours (https://usepa.servicenowservices.
com/airnow?id=kb_article_view&sysparm_article=KB0011856,
accessed 13 June 2022).

Zhang and Kondragunta (2021) developed a geographically
weighted regression (GWR) algorithm to estimate hourly
PM2.5 using AOD from the Advanced Baseline Imager (ABI;
NOAA/NESDIS 2018; Kondragunta et al. 2020; Zhang et al.
2020). These hourly estimates of PM2.5 can be used to fill the
gaps between ground monitors and report to the public on
current conditions using EPA’s nowcasting method. ABI sen-
sors are onboard Geostationary Operational Environmental
Satellites (GOES) GOES-16 and GOES-17, which provide
high temporal resolution observations, i.e., 5 min over the
continental United States (CONUS) and 10 min over the full
hemispheric disk. Using ABI AOD, hourly PM2.5 can be esti-
mated with inputs of ground level hourly PM2.5 monitor meas-
urements. There are two inherent advantages of PM2.5 estimates
from GOES: 1) hourly estimates of PM2.5 provide timely infor-
mation, especially early morning estimates, which can be infor-
mative of nighttime conditions and 2) hourly estimates of PM2.5

can be composited into daytime average values that provide
expanded spatial coverage. The daytime average PM2.5 esti-
mate or hourly nowcasting estimate, which includes the past
two hours of data to create a weighted-mean PM2.5, are more
useful in the case of smoke events when PM2.5 variation is high
and 24-h average PM2.5 is not an effective representation of
these changes.

One shortcoming of satellite AOD is that it can only be ob-
tained during the sunlit portion of the day. Although there
are some developments for nighttime AOD retrievals (Zhou
et al. 2021), the data are still not available widely and algo-
rithm work is still evolving. Despite the absence of nighttime
AOD retrievals, having multiple observations from sunrise to
sunset is more representative than polar-orbiting satellites,
such as Visible Infrared Imaging Radiometer Suite (VIIRS;
Liu et al. 2014; Zhang et al. 2016), that make only one observa-
tion in the midafternoon per day at a given location. Although
there is also a morning observation from Moderate Resolu-
tion Imaging Spectroradiometer (MODIS; Levy et al.,
2013), it has been on orbit for more than 20 years and will
retire soon (https://www.earthdata.nasa.gov/learn/articles/
modis-to-viirs-transition#:;:text=MODIS%20will%20exit%
20NASA's%20'A,in%20observation%20is%20already%

20underway., accessed 13 June 2022). AOD-derived PM2.5

provides timely estimates that may be useful for air quality
alerts to the public in near–real time.

In this paper, hourly, daytime, and daily PM2.5 over the
CONUS are estimated from the GWR algorithm using com-
bined ABI AOD from GOES-16 and GOES-17. Though
GOES-16 observes most of the CONUS, it views the western
United States at steep angles, due to which GOES-16 ABI
AOD retrievals are less reliable (Zhang et al. 2020). GOES-
17 coverage is mostly over the Pacific Ocean and the western
United States, and its retrievals are used whenever the
GOES-16 view angle exceeds 608. For areas where both
GOES-16 and GOES-17 observe with good view angles, an
average of the two available AODs is calculated and used in
the GWR algorithm. A commonly used 10-fold cross valida-
tion approach is used to evaluate the PM2.5 estimates. The dif-
ference between daytime PM2.5 and daily PM2.5 is investigated
using in situ AirNow data as well as the data estimated from
the GWR algorithm. A rolling 3-h PM2.5 average is also com-
puted from hourly data to approximate the EPA’s Nowcasting
method and to explore the usability for exposure calculations.
For exposure calculations, PM2.5 estimates are used to deduce
the number of people exposed to harmful levels of PM2.5

(.35 mg m23), which is the daily National Ambient Air
Quality Standard (NAAQS) set by the EPA for 24-h average
PM2.5 (https://www.epa.gov/pm-pollution/national-ambient-air-
quality-standards-naaqs-pm, accessed 8 June 2022). Even though
PM2.5 exceedances of the daily NAAQS are not based on day-
time or 3-h averages, these products are being made available
by NOAA to help provide real time air quality data to the pub-
lic to minimize PM2.5 exposure.

2. Data and methods

a. ABI AOD and estimated PM2.5 data

AOD is a measure of the light absorbed or scattered by the
total column of aerosols in the atmosphere. It is related to the
PM2.5 number concentration and optical properties and,
therefore, can be used to estimate surface PM2.5 to fill in areas
without surface stations (Hoff and Christopher 2009; Martin
2008). AOD is positively correlated to PM2.5 especially when
the aerosols are in the planetary boundary layer. The relation-
ship between AOD and PM2.5 varies due to many factors
such as planetary boundary layer height, aerosol vertical pro-
file, aerosol optical properties, etc. (Hoff and Christopher
2009). In this work, ABI AOD is used to estimate surface
PM2.5 over the CONUS. The ABI sensor onboard the geosta-
tionary satellites GOES-16 and GOES-17 contains 16 bands
covering the visible and infrared spectral range (Schmit et al.
2005, 2017). GOES-16 is located at 75.28W and GOES-17 is
located at 137.28W. AOD at 550 nm is retrieved from ABI re-
flectance data in selected visible and shortwave infrared
(SWIR) bands with a spatial resolution of 2 km at nadir
(NOAA/NESDIS 2018; Kondragunta et al. 2020). Further
bias correction is applied to the AOD data with high and
medium qualities to improve AOD retrieval accuracy
(Zhang et al. 2020). There is a cutoff of satellite view zenith
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angle at 608, above which AOD data are set as low quality
and are not recommended. ABI AOD from GOES-16 cov-
ers most areas of the CONUS except for several states in
the western CONUS. In contrast, ABI AOD from GOES-
17 covers the western CONUS but does not cover many
states in the east. By combining GOES-16 and GOES-17
ABI AOD, almost all the areas of the CONUS are covered,
except for a small region in Montana and North Dakota
(see section 3c for spatial coverage of the combined GOES-
16/17 AOD product). The ABI has different scan modes
for different areas and situations. Currently, there are
three scan sectors: full disk, CONUS, and mesoscale,
which have temporal resolutions of 10, 5, and 1 min, re-
spectively, for the current default “flex mode” scan mode
(M6). GOES-16 ABI AODs from the CONUS sector are
used, with a temporal resolution of 5 min. For ABI AOD
from GOES-17, full disk data with 10-min temporal reso-
lution are used, because the full disk sector provides more
coverage of the western United States compared to the
CONUS sector.

Hourly composite ABI AOD data from the two satellites
are combined onto the following two GOES grids: the areas
to the east of 1068W are on theGOES-16 grid and those to the
west of 1068W are on the GOES-17 grid. This combination
maximizes the utility of grid spatial resolution, because the
grid sizes of the GOES-16 grid are smaller to the east of
1068W than those of the GOES-17 grid and vice versa. In the
overlapping region, AOD values from the satellite in the
coarser grid are mapped to the finer grid using the nearest
neighbor method. If a grid contains AOD from both sensors,
they are averaged. Hourly surface PM2.5 values are then esti-
mated from hourly ABI AODs using the GWR algorithm,
which is presented in section 2b. The period used in this study
is two full years, 2020 and 2021.

The bias-corrected ABI AOD compares well with
AERONET AOD, with a correlation of 0.91, a mean bias of
0.00 and a root-mean-squared error (RMSE) of 0.05 (Zhang
et al. 2020). ABI AOD tends to have missing retrievals in
high AOD regions, such as those with heavy smoke, for two
main reasons. First, pixels with heavy smoke are sometimes
misclassified as cloud by the external cloud mask algorithm
and therefore no AOD retrievals are performed. Second, it
is also possible that the retrieved AOD for heavy smoke
pixels is higher than 5.0, which is the AOD upper bound for
the AOD retrieval algorithm, so the corresponding AOD
pixel is set as low quality.

1) DAILY AVERAGE AND DAYTIME AVERAGE PM2.5

In addition to hourly PM2.5 estimates, daily 24-h mean
(hereafter daily) PM2.5 values are estimated in two ways using
the GWR algorithm: 1) the daytime mean ABI AOD and a
daily 24-h mean PM2.5 from AirNow in situ stations were used
as the algorithm input to obtain daily estimated PM2.5 (daily
ePM2.5); 2) 1300 local standard time (LST) ABI AOD (mean
ABI AOD for 1300–1359 LST; representing one polar-orbiting
satellite observation per day) and a daily 24-h mean PM2.5 from
AirNow in situ stations were used as the input to obtain daily

estimated PM2.5 (daily ePM2.5_13). It should be noted that 1300
LST ABI AOD is obtained from the average of multiple obser-
vations and is therefore potentially better than a single snapshot
of polar-orbiting satellite AOD. No restrictions on the number
of ABI retrievals during the daytime are applied so that maxi-
mum possible spatial coverage can be achieved for daily
ePM2.5. In addition, to better represent daily AOD, daytime
mean AODs cover larger areas than the 1300 LST AODs, be-
cause additional retrievals from other hours contribute to the
pixels where no retrievals are available due to cloud coverage,
surface brightness, etc. On average, daily composite AOD re-
trievals contain more than double the number of pixels of the
corresponding 1300 LST AOD retrievals. Figure 1 is an exam-
ple that shows the difference in coverage between the single
hour mean AOD and the daytime mean AOD for a smoke
case in the California and Nevada area. As can be seen in
the figure, many of the gaps in the 1300 LST AOD composite
are filled in the daytime AOD composite. Besides the impact of
cloudiness on AOD retrieval coverage at different times of the
day, another important factor is the surface reflectance depen-
dence on the geometry over regions with little vegetation cover-
age. ABI does not retrieve AOD over bright surfaces. Over
these areas, the surface may be bright or dark depending on the
time of the day because of the differences in solar angles. In ad-
dition, the spatial inhomogeneity used for quality control of
ABI AOD may be also different at different times of day due
to the change in surface reflectance with respect to geometry,
which also causes differences in coverage (Huff et al. 2021).
Some areas have systematically lower numbers of PM2.5 esti-
mates than other areas and some areas have strong diurnal var-
iations in the number of PM2.5 estimates (see the supplement).
Descriptions of different estimated PM2.5 data and acronyms in-
troduced here and the following sections are listed in Table 1.

Hourly estimated PM2.5 (ePM2.5) from ABI AOD are only
available for daytime. Therefore, the average of hourly
ePM2.5 for a day represents the mean ePM2.5 during the day-
time only. It is different from the daily ePM2.5, which is an es-
timate of mean 24-h PM2.5 including both daytime and
nighttime. Although ABI does not have nighttime AOD re-
trievals, the daily ePM2.5 can still be estimated using daytime
or 1300 LST AOD and the 24-h mean in situ PM2.5 as de-
scribed above. The daytime ePM2.5 is obtained by averaging
the hourly ePM2.5 during a day. The daytime ePM2.5 is used to
evaluate the difference between the daytime ePM2.5 and the
daily ePM2.5. In addition, EPA also communicates 24-h (from
midnight to midnight) mean PM2.5 using its air quality index
(AQI). The AQI has six color-coded categories (https://www.
epa.gov/sites/default/files/2016-04/documents/2012_aqi_factsheet.
pdf, accessed 22 March 2022). Therefore, from an exposure per-
spective related to health impacts, daily ePM2.5 should be used
to maintain consistency with EPA standards for AQI estimates
or exposure analysis.

2) 3-H COMPOSITE ACCORDING TO EPA METHOD

The EPA nowcasting method is designed such a way that it
uses shorter time periods when concentrations are highly vari-
able and relaxes to a longer average when concentrations are
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stable. This approach prefers stable averages when variability
is not expected to influence people’s decision making out-
come. To approximate the nowcast, we adopted a 3-h rolling
window to calculate the current hour’s ePM2.5 that mimics
EPA’s approach of nowcasting during times when PM2.5 val-
ues are changing rapidly [Eq. (1)]. When concentrations are
not changing rapidly, the form of averaging will only make a
small difference. Though ABI AOD data are available every
five minutes for the CONUS sector, the GWR algorithm is
run on hourly composites of 5-min AOD data. The hourly
ePM2.5 data are translated from coordinated universal time
(UTC) to local solar time (LST) to calculate a 3-h composite
(3-h ePM2.5). For the 3-h composite PM2.5 at a particular
time step, data from that hour and the previous 2 h are in-
cluded. The number of 3-h composite images in a day vary
depending on location as well as season. If in a particular
grid, all three observations are missing, then that value is set
to a fill value:

PM2:5_mean(h) 5 mean[PM2:5(i) : i 2 (h, h 2 1, h 2 2) and

PM2:5(i)], (1)

where h represents the current hour.

b. AirNow data

AirNow collects data from voluntary reporting from net-
works of ground-based in situ surface monitors that report
PM2.5 data continuously (oPM2.5, Table 1). The oPM2.5 data
were obtained from http://files.airnowtech.org/ (accessed 31March
2022) for both hourly data and 24-h mean daily data. There
are a total of 1244 sites over the CONUS and Canada that are
used in this study for the years 2020 and 2021. Daily and
hourly oPM2.5 are reported by the Federal Reference Method
(FRM), or Federal Equivalent Method (FEM) monitors, or
“Acceptable PM2.5 AQI & Speciation Mass” monitors. The
regression lines between FRM and FEM are expected to

FIG. 1. ABI AOD over California and Nevada for a smoke event on 19 Aug 2020: (left) hourly AOD at 1300 LST
and (right) daytime mean AOD.

TABLE 1. Data descriptions of the PM2.5 data.

Acronym Explanation

ePM2.5 Estimated PM2.5 from ABI AOD
Daily ePM2.5 Estimated PM2.5 using GWR where regression parameters are between daytime ABI AOD and 24-h

in situ PM2.5

Daily ePM2.5_13 Estimated PM2.5 using GWR where regression parameters are between 1300 LST ABI AOD and 24-h
in situ PM2.5

Hourly ePM2.5 Estimated PM2.5 using GWR where regression parameters are between hourly mean AOD and hourly
in situ PM2.5

Daytime ePM2.5 Mean of all hourly ePM2.5 for each day
3-h ePM2.5 3-h rolling mean of hourly ePM2.5

oPM2.5 In situ observed PM2.5 from AirNow
Hourly oPM2.5 In situ observed hourly PM2.5 from AirNow
Daily oPM2.5 In situ observed daily 24-h mean PM2.5 from AirNow
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have slopes within 0.9 and 1.1 and intercepts from22 to 2 mg m23

(https://www.govinfo.gov/content/pkg/CFR-2008-title40-vol5/pdf/
CFR-2008-title40-vol5-part53-subpartC-appC-id43.pdf, accessed
26 May 2022). In this analysis, no attempt was made to distin-
guish between FRM, FEM or Acceptable PM2.5 AQI & Specia-
tion Mass measurements. The stations are distributed unevenly
and they are mostly denser in the western and eastern CONUS
than in the central CONUS. Even in the east, the distribution is
uneven, for example, West Virginia has only three stations, the
fewest stations of any state. In addition, stations are clustered
in urban and suburban regions, where population density is
highest, leaving gaps in many rural areas. For the two years of
data used in this study, the daily oPM2.5 values ranged from
24 to 837 mg m23, and the hourly oPM2.5 values ranged from
216 to 2629 mg m23. To remove outliers and potential instru-
ment errors, we only use the hourly oPM2.5 data within the
range from 210 to 1000 mg m23; the number of outliers is in-
significant (,100). Negative oPM2.5 is caused by the noise of
the measurement instruments when PM2.5 is close to 0.

c. GWR algorithm to estimate PM2.5

The GWR algorithm (Fotheringham et al. 2002; Hu et al.
2017; Ma et al. 2014; Zhang and Kondragunta 2021) is used to
estimate surface PM2.5 from ABI AOD, by building regres-
sion models locally from matchups of surface in situ oPM2.5

data and ABI AOD data at monitor locations. Weights are as-
signed to differentiate the contribution of the matchup data
points to the regression model such that points closer to the
point of interest (i.e., the monitoring stations) have larger
weights than those farther away.

In the regression model, PM2.5 at point (i, j) is related to
AOD linearly as follows:

PM2:5ij 5 a0ij 1 a1ijAODij: (2)

The linear regression coefficients a0ij and a1ij are different at
different locations, which are obtained through geographically
weighted linear regression from the matchup of surface in situ
PM2.5 and ABI AOD data. For hourly ePM2.5, ABI AOD data
are averaged spatially for the pixels within 27.5 km of a station
and then temporally for the starting hour (e.g., 0000–0059 UTC
is represented by 0000 UTC; Ichoku et al. 2002). For daily
ePM2.5 estimates, ABI AODs are also averaged spatially for
pixels within 27.5 km of a station and then temporally over the
daytime. Therefore, the matchups for daily ePM2.5 are between
daytime ABI AOD and daily observed PM2.5. The matchup
data used are from the same time step as that when PM2.5 is
estimated.

The weight is defined as an exponential function of the
distance:

w 5 exp(2d/d0), (3)

where d0 is a constant and set to be 50 km, and d is the dis-
tance between the point of interest and the matchup data
point used for regression. There are other ways to select the
weight, but sensitivity analysis shows that different weight

selections do not cause significant difference in the resulting
ePM2.5.

Though there are many machine learning based approaches
to estimate PM2.5 using many other ancillary data, such as me-
teorological parameters as input, we kept our approach sim-
ple for two main reasons: 1) we run the GWR algorithm
every hour in real time using AirNow oPM2.5 and ABI AOD
data, and 2) we have to generate the ePM2.5 as soon as the
data are observed so the information is disseminated to the
public with low latency. If the GWR algorithm is not run in
real time and is trained based on past data, then there is room
for uncertainties in ePM2.5, especially when aerosols are not
well mixed and stratified in the atmosphere. Because we dy-
namically calculate regression parameters in near–real time, if
aerosols are aloft and not located near the surface, then
ground monitors capture that (i.e., surface PM2.5 concentra-
tions are low) and regression parameters are fit accordingly.
We explored the option of using modeled boundary layer
height or aerosol layer height as informed by satellites in the
GWR regression but did not find a significant improvement in
the accuracy of the ePM2.5 (Fig. S3 in the online supplemental
material).

d. Population density

The population dataset used in this study was derived from
the American Community Survey (ACS) 2015–19 5-yr esti-
mate by the U.S. Census Bureau. The details about the ACS
can be found in https://www.census.gov/data/developers/data-
sets/acs-5year.2019.html. In this study, we use the census data
at census tract level. Census tracts are small, relatively perma-
nent statistical subdivisions of a county or a statistically equiv-
alent entity. Each census tract generally has about 4000
people, but varies from 1200 to 8000 people. The total num-
ber of census tracts in the United States was changed with de-
cennial year. We focused our study on the 722333 census
tracts in the CONUS. We assume that the population was ho-
mogeneously distributed inside a census tract. We estimate
the number of exposed people by counting people in the area
covered by high ePM2.5 (.35 mg m23) ABI pixels. Because
an ABI footprint (about 2 3 2 km2) is larger than some areas
of census tracts, we divided a satellite footprint into equal size
units, i.e., about 0.13 0.1 km2. These small units were gridded
to 0.0018 3 0.0018 cells. The ratio of the total number of the
high ePM2.5 grid cells and total number of grids covered in a
census tract represents the USG1 (unhealthy for sensitive
groups or worse) ratio, from which we can derive the number
of ePM2.5 USG1 exposure days by multiplying the total num-
ber of people in the census tract. The USG1 corresponds to
the 24-h standard for PM2.5 from NAAQS (https://www.epa.
gov/pm-pollution/national-ambient-air-quality-standards-naaqs-
pm, accessed 8 June 2022).

3. Results

a. Validation of estimated PM2.5

A 10-fold cross validation is used to validate the hourly and
daily ePM2.5 from ABI AOD (Hasti et al. 2017; Kelly et al. 2021).
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This is a common validation approach in which PM2.5 stations
are separated into 10 random groups and the GWR algorithm
is run 10 times with each group withheld once. In each round,
one group of PM2.5 is withheld and used as a validation dataset
(aka, test the model) and the other nine groups are used to
generate regression relations (aka, train the model). This pro-
cess ensures that the data used for training are independent
from those used for validation.

Figure 2 shows the scatterplots between ePM2.5 and oPM2.5

for hourly, 3-h composite, and daily 10-fold cross validation.
The hourly ePM2.5 have a coefficient of determination (R2) of
0.56, bias of 20.04 mg m23, and root-mean-square error
(RMSE) of 8.99 mg m23. The 3-h composite ePM2.5 has
slightly better performance than the hourly ePM2.5, with R2 of
0.59, bias of 0.00 mg m23, and RMSE of 8.38 mg m23. The
daily ePM2.5 have better performance than both the hourly
and the 3-h composite, with R2 of 0.70, bias of 0.06 mg m23,

and RMSE of 6.31 mg m23. The differences in the performan-
ces of the three ePM2.5 parameters are probably because the
temporal averaging of AOD prior to applying the GWR algo-
rithm reduces the noise of the data, which is caused by cloud
contamination, surface brightness variation, etc. (Zhang et al.
2020). The 3-h composite has 28% more matchups than the
hourly value, due to filling-in of missing data from the addi-
tional two hours. The red dots with vertical bars represent the
1-sigma standard deviation of binned data, which are sepa-
rated into PM2.5 AQI categories: good (0–12 mg m23), moder-
ate (12.1–35.4 mg m23), USG (35.5–55.4 mg m23), unhealthy
(55.5–150.4 mg m23), very unhealthy (150.5–250.4 mg m23),
and hazardous ($250.4 mg m23, not shown in the figure). The
statistics for these bins are shown in Table 2. All the three
ePM2.5 parameters behave similarly for the binned data: the
mean biases are positive in the “good” category and those in
the other categories are negative; the magnitude of the

FIG. 2. Scatterplots of 10-fold cross validation of (left) hourly, (center) 3-h composite, and (right) daily ePM2.5. The red data points are
binned averages for different air quality index ranges with the vertical bars showing 1s standard deviations.

TABLE 2. Statistics of 10-fold cross validation for different AQI categories.

AQI (PM2.5 range mg m23) No.
Mean
oPM2.5

Mean
ePM2.5

Mean
bias

Percent
mean bias (%)

Std dev
of bias

Hourly Good (0–12) 2 619 018 5.62 6.53 0.91 16.2 4.94
Moderate (12.1–35.4) 555 214 18.3 16.0 22.3 212.7 9.78
USG (35.5–55.4) 44 529 43.2 36.1 27.0 216.3 20.2
Unhealthy (55.5–150.4) 28 955 83.9 67.9 216.0 219.0 39.0
Very unhealthy (150.5–250.4) 3125 187.1 112.1 275.0 240.1 68.7
Hazardous ($250.4) 1203 327.2 142.2 2185.0 256.5 107.8

3-h composite Good (0–12) 3 366 491 5.71 6.52 0.81 14.2 4.57
Moderate (12.1–35.4) 710 356 17.9 16.0 22.0 210.9 9.18
USG (35.5–55.4) 51 560 43.2 37.2 26.0 213.8 19.6
Unhealthy (55.5–150.4) 34 917 84.3 70.0 214.3 217.0 39.6
Very unhealthy (150.5–250.4) 3763 187.1 114.2 272.9 239.0 67.6
Hazardous ($250.4) 1490 328.6 155.6 2173.1 252.6 113.3

Daily Good (0–12) 371 465 6.22 6.84 0.62 9.9 3.29
Moderate (12.1–35.4) 75 588 17.5 16.0 21.5 28.8 7.66
USG (35.5–55.4) 4172 43.1 38.5 24.6 210.7 17.6
Unhealthy (55.5–150.4) 2881 83.5 73.4 210.1 212.1 37.2
Very unhealthy (150.5–250.4) 325 188.4 130.7 257.7 230.6 73.6
Hazardous ($250.4) 129 330.6 199.4 2131.2 239.6 114.8
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negative mean bias increases with increasing PM2.5 concentra-
tions. On the other hand, the daily ePM2.5 values have re-
duced magnitudes of mean bias compared to the hourly and
3-h composite estimates at high PM2.5 ranges.

As reported by Zhang and Kondragunta (2021), there are
several reasons for the large negative bias at high PM2.5 con-
centrations. One of the main reasons is that the high AOD
retrievals are usually missing, especially in heavy smoke re-
gions, which are caused by the misclassification of the cloud
mask, over-screening for residual cloud contamination using
the spatial variability test, or the AOD retrieval out-of-range
flag (AOD . 5.0; NOAA/NESDIS 2018). The large spatial
variability of AOD at high PM2.5 concentrations also introdu-
ces uncertainty in the matchups, which use mean AOD in an
area with a radius of 27.5 km from a site. In addition, high
PM2.5 values are not very prevalent because PM2.5 air quality
in the United States is generally clean, with higher concentra-
tions observed only during smoke transport from fires or dust
storms. As a result, the regression model is trained mostly by
low oPM2.5-AOD matchups. While artificial oversampling
techniques such as the synthetic minority oversampling
technique (SMOTE) may help minimize the low bias for
high PM2.5 values, the estimates are still biased low (Vu et al.
2022).

We further validated the ePM2.5 values in a spatial context.
How does the GWR algorithm perform when not only surface
type changes drastically, but also when aerosol concentrations
are drastically different? As we move from the eastern United
States to the western United States, the surface reflectance in-
creases due to dry land, which impacts ABI AOD retrievals.
Also, high concentrations of PM2.5 from wildfire smoke are
observed more often in the western United States. Though
fires also occur in the southeastern United States, they do not
cause the extremely high, widespread PM2.5 concentrations as
observed in the western United States (Li et al. 2021; O’Dell
et al. 2021). We show in section 3c that the annual mean
AOD and the number of days with PM2.5 concentrations
greater than 35 mg m23 in the southeastern United States are
similar to those in the areas with very few fire/smoke events
and are much smaller than those in the western U.S. fire/-
smoke region (Figs. 7 and 8).

Figure 3 shows the maps of validation statistics by state
over the CONUS, including R2, mean bias, and RMSE, for
the hourly ePM2.5, 3-h composite ePM2.5, and the daily
ePM2.5. As expected, the performances from worst to the best
are in the order of hourly, 3-h composite, and daily ePM2.5.
The performance of hourly and 3-h composite ePM2.5 are
close, with 3-h composite a little better. The R2 of both the

FIG. 3. The R2, mean bias, and RMSE of 10-fold cross validation over CONUS by state. The dots represent the locations of ground PM2.5

stations.
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hourly and 3-h ePM2.5 ranges from close to 0 to 0.83, while R2

of the daily ePM2.5 ranges from 0.26 to 0.86. The 3-h ePM2.5

has higher R2 in some states than the hourly ePM2.5. In gen-
eral, the northern states have higher R2 than the southern
states. The three ePM2.5 parameters have similar mean bias
values, with a range from21 to 1 mg m23.

The hourly and 3-h composite ePM2.5 have higher RMSE
than the daily ePM2.5. RMSEs for the hourly ePM2.5 are in
the range of 2.1–14.8 mg m23, RMSEs for the 3-h composite
ePM2.5 are in the range of 2.1–14.1 mg m21, and RMSEs for
the daily ePM2.5 are in the range of 1.8–11.6 mg m23. The
western states have higher RMSE than the eastern states,
with the states of California and Oregon having the highest
RMSEs. This is likely because frequent smoke from wildfires
in these regions causes higher PM2.5 than in the eastern
United States. The GWR algorithm tends to have larger nega-
tive bias and larger RMSE for higher PM2.5.

The distribution of the PM2.5 ground stations is not uni-
form, as shown by the black dots to identify monitor locations
in each state (Fig. 3). Some states only have a few stations and
the statistics derived from them may not be representative if
PM2.5 concentrations are driven by mesoscale events as op-
posed to synoptic scale events. For example, the stations in
Nevada are all located near the boundaries at the southwest-
ern the southern corners of the state, where the largest urban
centers are, and there are no stations in the middle of the
state. However, from Fig. 3 there is no obvious relation be-
tween the performance and the station density.

Because the regression model is built using the oPM2.5 and
AODmatchup data close to the point of interest, the accuracy
of ePM2.5 can also be related to the spatial density of the Air-
Now sites or the distance of the closest site to the point of in-
terest. Figure 4 shows the errors of the hourly ePM2.5 versus
the distance of the nearest site using the 10-fold cross valida-
tion for different AQI categories. The data are separated into
bins with the same number of points, and the mean and stan-
dard deviation are calculated for each bin. There are no obvi-
ous variations of ePM2.5 errors with respect to the distance of
the nearest site for the categories of good, moderate, USG,
and unhealthy. For the very unhealthy and hazardous catego-
ries, there are increases in the negative bias from 0 to 50 km,
i.e., from 225 to 2100 mg m23 for very unhealthy and from
250 to 2200 mg m23 for hazardous categories. The standard
deviations of errors do not vary much for these two catego-
ries, which are about 50 mg m23 and 100 mg m23 respectively.
This is likely because of the mesoscale variability of PM2.5, es-
pecially in episodic situations of smoke from fires and dust
storms. We found that the scale length of AOD on low pollu-
tion days is about 100 km, and when pollution levels are vary-
ing dramatically over short distances, as can occur during
smoke transport (vertical lofting and horizontal transport at
higher altitudes not impacting the surface), including monitor
data from distances of 50–100 km can lead to poor regression
relations.

The relation of the hourly ePM2.5 errors to the surface type
is also investigated. For each site, the AOD pixels within a cir-
cle with a radius of 27.5 km are analyzed, and the surface type
with maximum pixel numbers is assigned to be the surface

type of the site, using the National Land Cover Database
(NLCD) for the CONUS from https://www.mrlc.gov (ac-
cessed 28 March 2022). Figure 5 shows the histogram of land
cover surface types for the AirNow sites and the hourly ePM2.5

errors versus surface types. From the figure, the median hourly
ePM2.5 errors for each type do not have noticeable variation.
The variations of hourly ePM2.5 errors range from 5 to
14 mg m23. Barren land has the largest variation of about
14 mg m23, but there is only one site belonging to this type.
The rest of the surface types have hourly ePM2.5 error varia-
tions ranging from 5 to 10 mg m23. Of these, shrub/scrub,
grassland/herbaceous, evergreen herbaceous wetland, and
medium/high intensity developed have higher variations
(;10 mg m23). Deciduous forest and open space developed
have lower variations (;5 mg m23).

b. Analysis of AirNow PM2.5 data

Because satellite sensors can only retrieve daytime AOD,
AODs used to calculate daily ePM2.5 do not represent a 24-h
mean as do the 24-h means of oPM2.5 data. If AOD retrievals
from polar-orbiting satellites are used, such as VIIRS on
board SNPP and NOAA-20, daily AODs are represented by
observations at about 1330 LST. If AOD retrievals from geo-
stationary satellites are used, such as ABI on GOES-16 and
GOES-17, daily AODs are represented by the mean of all
daytime hourly observations. The oPM2.5 values from Air-
Now are reported as 1-h means from which 24-h means are
calculated. Therefore, these AirNow data are used here to an-
alyze the representativeness of observations made only during
the sunlit portion of the day.

The correlation and differences between hourly oPM2.5 at
1300 LST and daily oPM2.5, as well as those between daytime
oPM2.5 and daily oPM2.5, are analyzed. The hourly oPM2.5 at
1300 LST is the average oPM2.5 for the hour 1300–1359 LST,
which covers the 1330 LST polar-orbiting satellite sensor
(e.g., VIIRS) overpass time. The daytime hours are different
for different seasons, which roughly approximates the time peri-
ods that ABI AOD has retrievals with appropriate solar angles.
The daytime is defined as local standard time of 0900–1500 for
winter (December–February), 0800–1600 for spring and fall
(March–May and September–November), and 0600–1800 for
summer (June–August), and daily is defined as the 24-h average
of observations in local time.

Figure 6 shows the CONUS maps of correlation, mean dif-
ference, and root mean squared difference (RMSD) between
oPM2.5 at 1300 LST and daily oPM2.5, and between the day-
time oPM2.5 and the daily oPM2.5. The data show that 1300
LST oPM2.5 has a larger difference with the daily oPM2.5 than
the daytime oPM2.5 has with the daily oPM2.5. The correla-
tions between the 1300 LST oPM2.5 and the daily oPM2.5

range from 0.46 to 0.95, while those between the daytime
oPM2.5 and the daily oPM2.5 range from 0.68 to 0.98. The cor-
relations for the daytime oPM2.5 are higher than those for the
1300 LST oPM2.5 in all states. Both the 1300 LST oPM2.5 and
the daytime oPM2.5 are lower than the 24-h mean PM2.5 in
most states, with a magnitude of around21 and20.5 mg m23,
respectively; inclusion of higher oPM2.5 values during the
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nighttime due to a shallow boundary layer is likely the reason.
RMSDs between the 1300 LST PM2.5 and the daily oPM2.5

(2.5–11.8 mg m23) are also higher than those between the day-
time oPM2.5 and the daily oPM2.5 (1.7–6.5 mg m

23). The distri-
butions of the correlation coefficients and RMSDs are similar
to those of R2 and RMSE in Fig. 3, i.e., the correlations are
higher in the northern states than those in the southern states,
and RMSDs are higher in the western states than those in
the eastern states, with the highest values in California and
Oregon. The temporal inconsistency between the AOD selec-
tion (i.e., daytime AOD versus 1300 LST AOD) to correlate
with the daily oPM2.5 in the GWR algorithm is a source of
uncertainty in estimating the daily PM2.5.

The comparisons of the 1300 LST oPM2.5 and the daytime
oPM2.5 to the daily oPM2.5 show that it is more accurate to es-
timate daily PM2.5 using the daytime PM2.5 than using meas-
urements from a single time step. This result indicates that
using AOD from geostationary satellites with higher temporal
resolution can potentially estimate daily PM2.5 more accu-
rately than using AOD from polar-orbiting satellites, which
have only one or two overpasses per day.

c. Analysis of ABI ePM2.5 data

The daily ePM2.5 from ABI AOD are averaged and annual
means for the years 2020 and 2021 are obtained, as shown in
Fig. 7. Similar patterns of the annual mean PM2.5 are observed

FIG. 4. Hourly ePM2.5 errors vs distance of nearest site. The dots represent the averages of hourly ePM2.5 minus
oPM2.5, and the bar ranges represent61 standard deviation of the differences.
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in both years: states in the western United States including
California, Nevada, Oregon, and Washington, have high an-
nual mean ePM2.5, i.e., higher than 12 mg m23 in many regions
and as high as 20–30 mg m23 in some regions; most of ePM2.5

values in the central and eastern states are much lower, i.e.,
below 12 mg m23. The higher ePM2.5 concentrations in the
western states are influenced by smoke from frequent large
wildfires in those states and adjacent Canadian provinces
(Kaulfus et al. 2017; Jaffe et al. 2020; Li et al. 2021). The an-
nual mean ePM2.5 is slightly higher in 2021 than that in 2020
in the central and eastern states, with an increase of about
3 mg m23 in many areas. The annual mean of daily ePM2.5

have R2 values of 0.73 and 0.70, mean biases of 0.34 and
0.71 mg m23, and RMSEs of 1.81 and 1.96 mg m23 for the
year 2020 and 2021, respectively.

The EPA has set the daily PM2.5 NAAQS as 35 mg m23

and set the AQI USG minimum threshold correspondingly
($35.5 mg m23). Figure 8 shows the number of USG1 days
(days daily PM2.5 above 35 mg m23) for the year 2020 and the
year 2021, which are derived from daily ePM2.5. The regions
with the highest number of USG1 days are located in California
and Nevada, with a maximum number of days around 50. The
other regions of the United States have a small number of
USG1 days, mostly less than 10. There is a gradient from high
to low of the number of USG1 days from west to east, indicat-
ing the dominance of the smoke events (David et al. 2021).
Comparing the two years, there are larger regions that have
USG1 days in 2021 than in 2020 in the eastern CONUS. Sev-
eral factors may contribute to the differences in the USG1

days pattern between the two years, such as the reduced mo-
bile emissions due to the COVID-19 pandemic reduced PM2.5

pollution in 2020 relative to 2021 (Straka et al. 2021), the inter-
annual variability in biomass burning (Li et al. 2021), and the
meteorological conditions (Hammer et al. 2021). The number
USG1 days are much less if the daily ePM2.5_13 data are used

because it has much less data coverage than the daily ePM2.5

data (supplement Figure S4).
Similar to the analysis we performed with oPM2.5 (Fig. 5),

we analyzed the relationship between estimated PM2.5 data
from ABI AODs (daytime ePM2.5 versus daily ePM2.5). Be-
cause hourly ePM2.5 is generated for every pixel, we can do
this regression analysis at the grid-level, unlike the analysis
shown in Fig. 6, where due to limited ground stations, we
stratified the analysis to individual states. Figure 9 shows the
correlation, mean difference, and RMSD between the day-
time ePM2.5 and the daily ePM2.5. The results are similar to
those for the oPM2.5 shown in Fig. 6. In most regions, the day-
time ePM2.5 and the daily ePM2.5 have correlation coefficients
of about 0.8 or higher. The daytime ePM2.5 is slightly lower
than the daily ePM2.5 in most areas, about 1 mg m23. The no-
table exceptions are the Montana/Wyoming area, Texas, and
the Gulf Coast of Louisiana. Both Texas (slightly positive)
and Wyoming showed a similar relationship in the oPM2.5

analysis as well. RMSDs are also higher in the western states,
especially in California, Nevada, and Oregon, with magni-
tudes as high as 10–15 mg m23 in some areas. The Nevada
area shows a lot of small-scale variation that needs further ex-
ploration. RMSDs are lower in the central and eastern states,
about 5 mg m23.

The current version of the ABI AOD algorithm requires
the view zenith angle to be less than 608 for high and medium
quality retrievals, which causes some areas not be covered
even with the combined GOES-16 and GOES-17 AOD. The
gap in Montana and North Dakota is the region that both
GOES-16 and GOES-17 have view zenith angle larger than
608 and therefore no AOD retrievals are available in that re-
gion. Arizona and New Mexico have the lowest correlation
between the daytime and daily ePM2.5 (correlation coefficient
between 0.3 and 0.6). The surface over these two states has
very little vegetation cover. The ABI AOD retrieval algorithm

FIG. 5. Histogram of land cover for (left) AirNow sites and (right) hourly ePM2.5 errors vs surface type.
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does not work well over such surfaces and therefore AOD
may have larger uncertainty (Zhang et al. 2020). Sometimes
there may be no retrievals in those regions due to the surface
reflectance being higher than the threshold of the AOD re-
trieval algorithm (see the supplement). Such uncertainties in
AOD may be one of the reasons for the low correlation in
these areas. On the other hand, it may be a local phenomenon,
where daytime estimates are higher than daily estimates be-
cause the same relationship (lower correlation between day-
time and daily oPM2.5) is seen in the observations (Fig. 6).

The benefit of the hourly PM2.5 estimate is that the diurnal
variation of PM2.5 can be monitored, rather than using a sin-
gle daily PM2.5 value. Figure 10 shows the map of the hour of

the highest mean ePM2.5 (the peak ePM2.5) from the two
years of hourly ePM2.5 estimates. In the eastern United States,
the peak occurs mostly in the early morning and late in the af-
ternoon. For example, in the northeast coastal states, such as
New Jersey, Massachusetts, Maryland, etc., the peak hours
are around 1800 LST; many other eastern areas have peaks in
the early morning at 0800 LST, such as Georgia, South Carolina,
etc. indicating the dominance of transportation sector related
PM2.5 during morning and evening rush hour traffic. Along the
west coast, such as California, Oregon, Washington, etc., the
peak hours occur late in the morning and close to noon, around
1000–1100 LST. The pattern of the eastern U.S. peaks is in
accordance with Manning et al. (2018), who reported that the

FIG. 6. (a),(b) Correlation; (c),(d) mean difference; and (e),(f) root-mean-squared difference (RMSD) between 1300 LST
hourly oPM2.5 and daily oPM2.5, and between daytime oPM2.5 and daily oPM2.5.
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mean PM2.5 tends to peak in the early morning and in the
early evening in North America. The diurnal change of the
mixed layer height is considered one of the main reasons
for the observed diurnal pattern of PM2.5 concentration
(Manning et al. 2018). The pattern in the western United
States, with high PM2.5 around noon, does not correspond to
the overall mean pattern observed by Manning et al. (2018);
probably the pattern is caused by the characteristics of wild-
fire smoke events.

d. PM2.5 exposure case study: Extreme fires of 2020

We calculated the number of people receiving air quality
warnings at the census tracts level, based on satellite derived
PM2.5 estimates during 1 July–2 October 2020, when the fire
season was extreme and persistent in California, Oregon, and
Washington. We generated four different estimates, one for
daily ePM2.5, one for daytime ePM2.5, one for daily ePM2.5_13,
and one for the 3-h ePM2.5 rolling average. For comparison,
we also calculated the number of people receiving the warn-
ings using AirNow observations alone, without the benefit of
satellite data using hourly oPM2.5 and daily oPM2.5. Figure 11
shows the time series of the number of people potentially
warned about harmful exposure to ePM2.5 for these six esti-
mates, starting 1 July 2020 and ending 2 October 2020. While
there is not much difference in the number of people who
would have been exposed to dangerous levels of PM2.5 concen-
trations based on ePM2.5 using either the daily average (3.7 mil-
lion day21) or the daytime average (4.0 million day21), the 1300
LST ePM2.5 protects (or informs) far fewer people (2.6 million

day21). The daily ePM2.5_13 values are reflective of one obser-
vation per day and have many gaps due to clouds. In contrast,
daily or daytime ePM2.5 values have broader spatial coverage
due to multiple observations. The gray line in Fig. 11 shows the
number of people exposed according to the 3-h ePM2.5 rolling
mean. If forecasters were to rely on satellite data to provide
warnings and alerts, having the redundancy of ePM2.5 on hourly
basis is extremely useful; potential harmful exposure to PM2.5

reaches, on average, 1.8 million people per hour during the fire
season. In contrast, only 0.17 million people per hour are in-
formed by AirNow monitors. It should be noted that, with Air-
Now monitor data, we only calculated the number of people
exposed to harmful levels of PM2.5 in the census tract where the
monitor is located. This was done to be consistent with how sat-
ellite data were analyzed. However, in real time applications of
AirNow data, forecasters look at all the monitors located in
their reporting areas and use the monitor that has the highest
PM2.5 concentration to determine if an alert has to be issued or
not. If that approach is taken for all reporting areas of the
CONUS, the number of people alerted for harmful levels of
pollution will likely be similar to what we report for satellite
data in Fig. 11.

4. Discussion and conclusions

A geographically weighted regression algorithm is used in
this work to estimate hourly, daytime, and daily PM2.5 from
ABI AOD over the CONUS. The results show that daily
ePM2.5 performs better than hourly ePM2.5, probably due to
temporal averaging that removes noise in the data. The hourly

FIG. 7. Annual mean daily ePM2.5 estimates for (left) 2020 and (right) 2021.

FIG. 8. Number of unhealthy for sensitive groups or higher (USG1, daily ePM2.5 . 35 mg m23) days for (left) 2020
and (right) 2021.
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FIG. 9. (top) Correlation, (middle) mean difference, and (bottom) RMSD between daytime
and daily ePM2.5.
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ePM2.5 data have an R2 of 0.56, a mean bias of 20.04 mg m23,
and an RMSE of 8.99 mg m23. The daily ePM2.5 data have an
R2 of 0.70, a mean bias of 0.06 mg m23, and an RMSE of
6.31 mg m23. Both hourly and daily ePM2.5 have larger nega-
tive bias in the higher PM2.5 ranges, i.e., very unhealthy and
hazardous AQI categories, while daily ePM2.5 have lower
magnitudes of mean bias than hourly ePM2.5. ePM2.5 do not
show noticeable dependence on the distance to the nearest
site for the lowest four AQI categories, but the negative
biases increase with respect to increasing distances in the
very unhealthy and hazardous categories. The ePM2.5 also
do not appear to have significant dependencies on land sur-
face type.

The nowcasting ability of ePM2.5 is evaluated by looking at
the AirNow oPM2.5 data. The relation between oPM2.5 at
1300 LST and the daily mean, and between the daytime mean
and the daily mean are analyzed, which correspond to the

overpass times of polar-orbiting satellites and geostationary
satellites, respectively. The results show that the daytime
oPM2.5 estimates have higher correlation coefficients (0.68–
0.98 versus 0.46–0.95) and lower RMSDs (1.7–6.5 versus 2.5–
11.8 mg m23) with the daily oPM2.5 than the oPM2.5 at 1300
LST have with the daily oPM2.5. This is an indication that
higher temporal resolution data from geostationary satellites
can potentially better represent the daily PM2.5.

While there is not much difference in the number of people
informed about dangerous levels of PM2.5 concentrations based
on ePM2.5 using either the daily average (3.7 million day21) or
the daytime average (4.0 million day21), the 1300 LST ePM2.5

protects (or informs) far fewer people (2.6 million day21). If
forecasters were to rely on satellite data to provide warnings
and alerts, having the redundancy of ePM2.5 on hourly basis is
extremely useful; information of potential harmful exposure to
PM2.5 reaches, on average, 1.8 million people per hour during

FIG. 10. Peak hour of mean ePM2.5 derived from two years of hourly ePM2.5.

FIG. 11. Population exposed to PM2.5 . 35 mg m23 over CONUS (July–September 2020).
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the fire season; in contrast, only 0.17 million people per hour
are informed by AirNow monitors.

Operational air quality forecasters use many different
sources of information including satellite products to pro-
vide local and regional warnings and watches for poor air
quality. In this study, we examined the role of satellite data,
specifically the difference between geostationary satellites
and polar-orbiting satellites and showed that having multi-
ple observations expands spatial coverage and improved
product performance. In addition to gaps in data due to
clouds, polar-orbiting satellite data are also often not timely
for the forecasters who issue the forecast in the midafter-
noon for the next 24–48 h.

Thus far, satellite estimates of PM2.5 data have been used in
retrospective case studies of air pollution episodes and their
impact on human health for long-term and short-term expo-
sure. Geostationary satellite aerosol products have only been
used, thus far, to verify hourly operational air quality fore-
casts to diagnose numerical model errors in physics and chem-
istry, especially those related to boundary layer dynamics,
wind speed and direction, and anthropogenic and biomass
burning emissions (Kondragunta et al. 2008, 2018). This is the
first study to conduct an extensive analysis to demonstrate
that satellite data when made available in Nowcasting mode
can be very useful for operational forecasters when providing
warnings and watches.

The study is limited by the GWR algorithm having large
negative bias (56% for hourly estimates and 39% for daily es-
timates) for concentrations greater than 250 mg m23, while it
performs very well for concentration ranges between 0 and
250 mg m23. This arises from low sampling when concentra-
tions are high as thick smoke is misclassified as cloud. This is
more serious for ABI data compared to VIIRS data because
unlike VIIRS, ABI does not have deep blue channels, there-
fore the ABI cloud mask algorithm is less capable than that of
VIIRS. Some of these pixels may be identified as low quality
due to the inconsistency in different cloud mask tests, because
low quality pixels are not used in the PM2.5 estimation algo-
rithm. One possible solution is therefore to identify such pix-
els and use them in the PM2.5 estimation. Therefore, further
improvements in the ABI AOD retrieval algorithms, such as
cloud mask modifications and quality controls, may improve the
accuracy of PM2.5 estimates. In addition, improvements in the es-
timation algorithms using oversampling techniques such as
SMOTE to reduce large biases in the high PM2.5 concentration
ranges will be explored.
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